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Oxidative damage to DNA from a distance has been demon- AA (5'-OH, 3-0PO;-OR) AA (5-0PO,%, 3-OH)
strated in a variety of systems using a range of photooxidats. o, E L E wEef o
These studies have been useful not only in delineating new routes i532%§ AR .
to biochemical damage but also in exploring mechanisms for DNA _W ¥ “h

Intere. —= -

charge transport (CT). Our laboratory has employed metallointer-
calators to demonstrate oxidative damage over a distance of 200
A5 to explore the effects on CT of intervening DNA sequefoé,
DNA structure? and of protein binding to DNAand to examine
DNA CT within the cell nucleud? Typically, DNA assemblies are
constructed containing the tethered metallointercalator Rigpiyiy™
as the photooxidant, which is spatially separated from tixG G-
3 sites. The extent of charge transport is assessed through - -
measurements of the ratio of yields of damage at the guanine Interc. —=
doublet distal versus that proximal to the metal binding site. =
Theoreticall and experimental studies' have shown that the' % » -
of 5-GG-3 sequences in DNA are preferentially oxidized, and this
5'-G reactivity has become a hallmark for electron-transfer damage Fgure 1. Phosphorimagery of a denaturing 20% polyacrylamide gel that
to DNA. Oxidative damage in t_hes_e_studies is quantitated by ?;I'gggéﬁbﬁ?eiT:c(%gpc&g?feg%‘ﬁ’)eg?% %\AI?g%ﬁ?%?ocggzg_eot%?smﬁ
measuring strand breaks after piperidine treatment 8f5end- using tethered\-Rh(phipbpy3*. The sequence designations are shown in
labeled DNA and gel electrophoredfs. Table 1, where the strand containing the guanine doublets are efth@r 5
Since CT through well-stacked DNA duplexes appears to be 3'-3%p end-labeled. For each assembly, the lanes are as follows, &+T
much faster than trapping of the resultant guanine radical by O show Maxam-Gilbert sequencing reactions; 313 nm shows the DNA

. . fragment after direct photocleavage by the metallointercalator at 313 nm
13
and HO,™ one might expect that the ratio of the damage at the for 10 min without piperidine treatment; 365 nm shows the DNA fragment

distal versus proximal guanine doublets would b&, assuming after irradiation at 365 nm for 20 min at ambient temperature followed by
that the thermodynamic potentials and the trapping rates at the twopiperidine treatment; Dark shows samples not irradiated but treated with

sites are equal. Yet, with metallointercalators, distal/proximal giger:\s‘liqe; A(I:II Sa}:‘g"elsocor'\‘ﬂta’il”eg ﬁﬂs‘/_'t met?ld_cctJerleg-tethc_ere; %Dg'}ex,
: H i 14,15 . m ns-Cil, p , m aCl. oltes ot distal ana proxim -
damgge ratios are Slgnlflcgntlyl. One explanation that we damage as well as the intercalation site are indicated.
considered was that the cationic charge on the complex bound near ) ) ) o
the duplex terminus might be sufficient to increase the oxidation returned to the distal side of the oligomer, the ratio increased to
potential of the proximal GG doublet versus the distal Site. the intermediate value of 0.8. We also introduced a single-base
To examine how the charge distribution on the DNA helix affects ©verhang, effectively adding one negative charge to trend of
charge transport, we simply compared distal/proximal damage ratiosthe Rh-tethered strand. With-¥P-end-labeling of the comple-
after photooxidation of otherwise identical Rh-tethered assemblies, Mentary strand, a:‘d no phosphat% on therfi, the damage ratio
except for¥?P-labeling either at the'5or 3-end (Figure 1). Since ~ Was also 0.8 (AA* (50H, 3-OPG,-OR)); an added phosphate
the unlabeled end of the oligonucleotide is a hydroxyl moiety, while ©n the distal side OI the 0"9‘23[“efr throughlabeling, increased
the labeled end is a phosphate, this labeling difference correspondsthe ratio to 3.6 (AA* (5-0PQ", 3-OH)). _
in the absence of charge neutralization by condensed counterions, 't iS important to note that these oxidation experiments were
to an increase in one negative charge on the proximal side of theconducted under single-hit con_dltlons (at most,_ one_strar!d break
oligomer and a decrease in two negative charges on the distal sidg?€r labeled st.rand)l. Thus, the differences seen in ratios with the
of the oligomer. Table 1 summarizes the results. The highest distal/ différent labeling cannot be the result of multiple breaks on a given
proximal damage ratio we observed was 5.2 with th&B-end- strand, counted differently depending upon the position of the label.
labeled assembly containing an intervening #act (AA (5- Our results must instead reflect how the different charge distribu-
OPQ?-, 3-OH)). 3-end-labeling resulted in a ratio of 0.4 (AA  tions affect DNA hole transport. o
(5'-OH, 3-OPQ,-0OR)). Thus, moving the negative charge to the Increasing the ionic strength did not alter the observed oxidative
proximal end of the duplex dramatically decreased hole transport damage ratios. This result is consistent with models for condensed
to the distal end. counterion atmosphere distributions, which do not appear to vary
Assemblies containing intermediate charge distributions were also@PPreciably with ionic strengtft.We also found that changing the
examined. In assembly AA ®P0O2-, 3-OP0,-OR), we added associated counterion to Mg had no significant effect on the
an unlabeled phosphate to the Bnd but maintained the'-32P- damage ratio8?

end-label. In this case, where some negative charge was now '€ possibility that the difference in the amount of guanine
oxidative damage observed with changes in ion distributions was

* To whom correspondence should be addressed. a consequence of a conformational change in tgerdc€> was
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Table 1. The Long-Range Oxidative Damage Obtained in the also reflect the solvation of the terminal phosphate groups.
g}%stggi%g;tv?{r'%ﬁif;‘g{%ﬁ Distributions, Utilizing the Tethered Importantly, a high longitudinal polarizability has been propésed
' 2 as a factor in DNA conductivity in electrochemical measurements
Sequence® Charge Distribution® Dis‘“g‘;{;;‘ti;‘:']g‘;iﬁ"i"ed on DNA films:32 The high dielectric values obtained here are
Q0 consistent with such a proposal. Certainly these results suggest that
3220 CrocamnRAAAGGRATA S 43 further consideration be given to the longitudinal polari-
AA (5-0P03%,3"-OH) :50——__9'—;" 5.2 (0.4) zability of DNA as a factor in mechanisms for charge transport.
PRy 9 e :
AA (5-0PO;?, 3-0PO;-OR) ) — 0.8 (0.1) Acknowledgment. We are grateful to the NIH for their financial
+. h_—o .
AA (5-OH, 3-OP0;OR) B — 0.4 (£0.1) support (GM49216) and to the NSF for a predoctoral fellowship
R,? (T.T.W.) We also thank D.M. Crothers for his suggestions.
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DNA has an atmosphere of condensed counterions surrounding it, site, ¢ = qelmeqeli Wheree, is the permittivity in a vacuum, is the

; ; in i dielectric constanty is the magnitude of the chargejs the elementary
O_ne mlght have eXpECted _Only aminor perturbatlor_l m_the net Char_ge charge, and is the distance from the charge to thle-&. If the distal/
distribution around the oligomer, but our results indicate that this proximal damage ratio reflects the difference in potential at the two sites,
is not the case. ¢2 — ¢1 = «T In(distal 3-G damage/proximal'8G damage) where is

. . X Boltzmann’s constant, antlis 298 K.
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. . Lo . . dielectric of DNA.
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